Khaja Bandanawaz University
 Faculty of Engineering and Technology
 B.E. First Semester
 Question Bank
 Subject: Calculus and Linear Algebra (19KBMAT11)

Module 1

1. With usual notation, prove that $\tan \emptyset=r \frac{d \theta}{d r}$.
2. Find the angle between the radius vector and tangent for the curve $r=a(1+$ $\cos \theta$) and also find the slope of the tangent at $\theta=\pi / 3$.
3. Find the angle between the radius vector and tangent for the curve $r^{m}=$ $a^{m}(\cos m \theta+\sin m \theta)$.
4. Find the angle between the curves $r^{2} \sin 2 \theta=4$ and $r^{2}=16 \sin 2 \theta$.
5. Find the angle of intersection between the curves $r=a(1+\sin \theta)$ and $r=a(1-$ $\cos \theta$).
6. Show that the curves $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$ cut each other orthogonally.
7. Prove that the following pairs of curves $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$ intersect orthogonally.
8. With usual notation, prove that $\frac{1}{p^{2}}=\frac{1}{r^{2}}+\frac{1}{r^{4}}\left(\frac{d r}{d \theta}\right)^{2}$.
9. Obtain the pedal equation of the curve $r^{n}=a^{n} \cos n \theta$
10. Obtain the pedal equation of the curve $r^{n}=a(1+\cos n \theta)$.
11. Find the radius of curvature of the curve $r^{n}=a^{n} \cos n \theta$.
12. Find the radius of curvature of the curve $y^{2}=\frac{4 a^{2}(2 a-x)}{x}$ where it cuts the x -axis.
13. Find the radius of curvature of the curve $x^{3}+y^{3}=3 a x y$ at $\left(\frac{3 a}{2}, \frac{3 a}{2}\right)$.
14. Expand $\sin x$ in ascending powers of $\left(x-\frac{\pi}{2}\right)$ upto the $4^{\text {th }}$ degree term.
15. Using Maclaurins expansion, prove that $\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots$

Module 2

1. If $u=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$.
2. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3}{x+y+z}$ and hence show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=-\frac{9}{(x+y+z)^{2}}$.
3. If $z=x y^{2}+x^{2} y$ where $x=a t^{2}, y=2 a t$, find $\frac{d z}{d t}$. Also verify the result by direct substitution.
4. If $u=\tan ^{-1}\left(\frac{y}{x}\right)$ where $x=e^{t}-e^{-t}$ and $y=e^{t}+e^{-t}$, find $\frac{d u}{d t}$.
5. If $u=f(y-z, z-x, x-y)$, then show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
6. If $z=f(x, y)$ where $x=r \cos \theta, y=r \sin \theta$, show that $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+$ $\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$.
7. If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
8. If $u=x^{2}+y^{2}+z^{2}, v=x y+y z+z x, w=x+y+z$, find $J=\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
9. If $u=\frac{y z}{x}, v=\frac{z x}{y}, w=\frac{x y}{z}$, show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=4$.
10. If $x=r \sin \theta \cos \emptyset, y=r \sin \theta \sin \emptyset, z=r \cos \theta$, show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \varnothing)}=r^{2} \sin \theta$.
11. Evaluate : $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}+d^{x}}{4}\right)^{1 / x}$.
12. Evaluate : $\lim _{x \rightarrow a}\left(2-\frac{x}{a}\right)^{\tan \left(\frac{\pi x}{2 a}\right)}$.
13. Evaluate : $\lim _{x \rightarrow \pi / 2}(\sin x)^{\tan (x)}$.
14. Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$
15. Examine the function $f(x, y)=x y(a-x-y)$ for extreme values.

Module 3

1. Obtain the Reduction formula for $\int \sin ^{n} x d x, n>0$ and hence evaluate $\int_{0}^{\pi / 2} \sin ^{n} x d x$.
2. Obtain the Reduction formula for $\int \cos ^{n} x d x, n>0$ and hence evaluate $\int_{0}^{\pi / 2} \cos ^{n} x d x$.
3. Obtain the Reduction formula for $\int \sin ^{m} x \cos ^{n} x d x$.
4. Evaluate $\int_{0}^{2} x \sqrt{2 x-x^{2}} d x$.
5. Evaluate: $\int_{0}^{2 a} x \sqrt{2 a x-x^{2}} d x$.
6. Evaluate : $\int_{0}^{\pi / 6} \sin ^{2} 6 x \cos ^{4} 6 x d x$ using Reduction formula.
7. Evaluate : $\int_{0}^{\pi} \frac{\sin ^{4} \theta}{(1+\cos \theta)^{2}} d \theta$.
8. Evaluate : $\int_{0}^{1} x^{3 / 2}(1-x)^{3 / 2} d x$.
9. Evaluate : $\int_{0}^{2 a} \frac{x^{2}}{\sqrt{2 a x-x^{2}}} d x$
10. Evaluate : $\int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{7 / 2}} d x$
11. Find the orthogonal trajectories of (a) $r^{n}=a^{n} \cos n \theta$ (b) $r=a(1+\sin \theta)$
(c) $r=2 a \cos \theta$, where a is a parameter.
12. Show that the family of parabolas $y^{2}=4 a(x+a)$ is self orthogonal.
13. Find the orthogonal trajectories of the family of ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1$, where λ is a parameter.
14. Show that the family of curves $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$ is self orthogonal, where λ is a parameter.
15. If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 12 minutes, find the temperature of the body after 24 minutes.
16. A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 minutes in the surroundings of temperature $40^{\circ} \mathrm{C}$, find the temperature of the body after 40 minutes from the original instant.
17. Water at temperature $10^{\circ} \mathrm{C}$ takes 5 minutes to warm upto $20^{\circ} \mathrm{C}$ in a room of temperature $40^{\circ} \mathrm{C}$, find the temperature after 20 minutes.
18. A body in air at $25^{\circ} \mathrm{C}$, cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 1 minute. Find the temperature of the body at the end of 3 minutes.
19. Solve : $\left(y^{3}-3 x^{2} y\right) d x-\left(x^{3}-3 x y^{2}\right) d y=0$.
20. Solve : $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$.
21. Solve : $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$.
22. Solve : $y e^{x y} d x+\left(x e^{x y}+2 y\right) d y=0$.
23. Solve : $\frac{d y}{d x}-\frac{2}{x} y=\frac{y^{2}}{x^{3}}$.
24. Solve : $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$.
25. Solve: $(2 x \log x-x y) d y+2 y d x=0$.
26. Solve : $\frac{d y}{d x}=x y^{3}-x y$.
27. Solve $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0$.
28. Solve : $x \frac{d y}{d x}+y=x^{3} y^{6}$.
29. Solve : $\frac{d y}{d x}+y \tan x=y^{3} \sec x$.
30. Solve : $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$

Module 4

1. Find the directional derivative of the function $\varnothing=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ along $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$.
2. Find $\operatorname{div} \vec{F}$ and curl \vec{F} where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
3. Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that $\vec{F}=(x+y+a z) i+(b x+2 y-z) j+(+c y+2 z) k$ is irrotational. Also find \emptyset such that $\vec{F}=\nabla \emptyset$.
4. Show that $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+2 z) k$ is both solenoidal and irrotational.
5. Show that $\vec{F}=\frac{x i+y j}{x^{2}+y^{2}}$ is both solenoidal and irrotational.
6. Find the directional derivative of the function $\varnothing=4 x z^{3}-3 x^{2} y^{2} z$ at $(2,-1,2)$ along $2 i-3 j+6 \mathrm{k}$.
7. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2 , $-1,2)$.
8. If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$ find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point $(1,-1,1)$.
9. If $\vec{F}=\left(3 x^{2} y-z\right) i+\left(x z^{3}+y^{4}\right) j-\left(2 x^{3} z^{2}\right) k$, find $\operatorname{grad}(\operatorname{div} \vec{F})$ at $(2,-1,0)$.
10. If $\vec{F}=(x+y+1) i+j-(x+y) k$, show that $\vec{F} .(\operatorname{curl} \vec{F})=0$.
11. Show that $\vec{F}=(y+z) i+(z+x) j+(x+y) k$ is irrotational. Also find a scalar function \emptyset such that $\vec{F}=\nabla \varnothing$.
12. Show that $\vec{F}=2 y z i+\left(x^{2} z^{2}+z \cos y z\right) j+\left(2 x^{2} y z+y \cos y z\right) k$ is a potential field and hence find its scalar potential.
13. Using Green's theorem, find the area enclosed between the parabolas $x^{2}=4 a y$ and $y^{2}=$ 4ax.
14. Using Green's theorem evaluate : $\int_{C}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the square formed by the lines $x= \pm 1, y= \pm 1$.
15. Using Green's theorem evaluate $\int_{C}(y-\sin x) d x+\cos x d y$, where C is the triangle in the xy - plane formed by the lines $\mathrm{y}=0, \mathrm{x}=\pi / 2$ and $\mathrm{y}=(2 \mathrm{x}) / \pi$.
16. Verify Green's theorem for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of the region enclosed by the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}+\mathrm{y}=1$.
17. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve made up of the lines $\mathrm{y}=\mathrm{x}$ and the parabola $y=x^{2}$.
18. Using Stokes's theorem, evaluate $\int_{S}(\operatorname{curl} \vec{f}) . \widehat{n} d S$ for $\vec{f}=(y-z+2) i+(y z+4) j-$ $x z) k$ where S is the cubical surface formed by the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=2, \mathrm{y}=0, \mathrm{z}=0$.
19. If C is the boundary of the triangle with vertices at $P(1,0,0), Q(0,2,0)$ and $R(0,0,3)$, evaluate $\int_{C}(x+y) d x+(2 x-z) d y+(y+z) d z$ by using Stokes's theorem.
20. Verify Stokes's theorem for $\vec{f}=y i+z j+x k$, for the upper part of the shpere $x^{2}+y^{2}+$ $z^{2}=a^{2}$.
21. Using the Divergence theorem, evaluate $\int_{S} \vec{f} . \hat{n} d S$, where $\vec{f}=x^{3} i+y^{3} j+z^{3} k$, and S is the surface of the sphere $x^{2}+y .^{2}+z^{2}=a^{2}$.
22. By using the Divergence theorem, evaluate $\int_{S} \vec{f} \cdot \hat{n} d S$, where $\vec{f}=4 x i \pm 2 j+z^{2} k$, and S is the surface enclosing the region for which $x^{2}+y^{2} \leq 4$ and $0 \leq z \leq 3$.
23. Verify the Divergence theorem for $\vec{f}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

Module 5

1. Find the rank of the matrix $A=\left[\begin{array}{cccc}4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4\end{array}\right]$.
2. Find the rank of the matrix $A=\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1\end{array}\right]$.
3. Find the rank of the matrix $A=\left[\begin{array}{rrrl}0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12\end{array}\right]$.
4. Find the rank of the matrix $A=\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$.
5. Find the rank of the matrix $A=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$.
6. Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7\end{array}\right]$.
7. Test for consistency and solve : $x+y+z=6 ; x-y+2 z=5 ; 3 x+y+z=8$
8. Test for consistency and solve : $x+2 y+3 z=14 ; 4 x+5 y+7 z=35 ; 3 x+3 y+4 z=21$
9. Test for consistency and solve : $x+2 y+2 z=1 ; 2 x+y+z=2 ; 3 x+2 y+2 z=3 ; y+$ $z=0$
10. Find the values of λ for which the system of equations: $x+y+z=1 ; x+2 y+4 z=$ $\lambda ; x+4 y+10 z=\lambda^{2}$ has a solution. Solve it in each case.
11. For what values of λ and μ does the system of equations: $x+2 y+3 z=6$; $x+3 y+5 z=$ $9 ; 2 x+5 y+\lambda z=\mu$ has (i) no solution, (ii) unique solution and (iii) infinitely many solutions.
12. Solve by Gauss elimination method : $x+y+z=4 ; 2 x+y-z=1 ; x-y+2 z=2$.
13. Solve by Gauss elimination method : $4 x+y+z=4 ; x+4 y-2 z=4 ; 3 x+2 y-4 z=$ 6.
14. Solve by Gauss elimination method : $2 x-y+3 z=1 ;-3 x+4 y-5 z=0 ; x+3 y-$ $6 z=0$.
15. Solve by Gauss elimination method : $x+2 y+z=3 ; 2 x+3 y+3 z=10 ; 3 x-y+2 z=$ 13.
16. Solve by Gauss elimination method : $2 x+y+4 z=12 ; 4 x+11 y-z=33 ; 8 x-3 y+$ $2 z=20$.
17. Solve by Gauss-Jordan method : $2 x+y+4 z=12 ; 8 x-3 y+2 z=20 ; 4 x+11 y-z=$ 33.
18. Solve by Gauss-Jordan method: $2 x-3 y+z=-1 ; x+4 y+5 z=25 ; 3 x-4 y+z=2$.
19. Solve by Gauss-Jordan method : $2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=$ 16.
20. Solve by Gauss-Jordan method : $x+y+z=9 ; 2 x+y-z=0 ; 2 x+5 y+7 z=52$.
21. Solve by Gauss -Jordanmethod : $2 x+3 y-z=5 ; 4 x+4 y-3 z=3 ; 2 x-3 y+2 z=2$.
22. Solve by Gauss-Seidel method : $2 x+y+6 z=9 ; 8 x+3 y+2 z=13 ; x+5 y+z=7$. Carry out 5 iterations to obtain solution correct to 4 decimal places.
23. Solve by Gauss-Seidel method : $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+$ $20 z=25$.
24. Solve by Gauss-Seidel method : $10 x+y+z=12 ; x+10 y+z=12 ; x+y+10 z=12$.
25. Solve by Gauss-Seidel method: $5 x+2 y+z=12 ; x+4 y+2 z=15 ; x+2 y+5 z=20$. Take initial approximation to the solution as $[1,0,3]^{T}$.
26. Solve by Gauss-Seidel method : $28 x+4 y-z=32 ; x+3 y+10 z=24 ; 2 x+17 y+4 z=$ 35. Carry out 5 iterations to obtain solution correct to 4 decimal places.
27. Using Power method find the largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$ with $X^{(0)}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. Carry out 6 iterations to obtain solution correct to 4 decimal places.
28. Using Power method find the largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ with $X^{(0)}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Carry out 6 iterations to obtain solution correct to 4 decimal places.
29. Using Power method find the largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5\end{array}\right]$ with $X^{(0)}=\left[\begin{array}{c}1 \\ 0.8 \\ -0.8\end{array}\right]$. Carry out 5 iterations.
30. Using Power method find the largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ with $X^{(0)}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
31. Diagonalize the matrix $A=\left[\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right]$ and hence find A^{4}.
32. Diagonalize the matrix $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.
33. Reduce the matrix $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$ to diagonal form. Hence find A^{6}.
34. Reduce the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ to diagonal form.
35. Reduce the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]$ to diagonal form.
