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Module 1

. . de
With usual notation, prove that tan @ = r—.

Find the angle between the radius vector and tangent for the curve r = a(1 +
cos 0) and also find the slope of the tangent at 8 = /3.

Find the angle between the radius vector and tangent for the curve r™ =
a™(cosmé + sinm®).

Find the angle between the curves r? sin 20 = 4 and r? = 16 sin 26.

Find the angle of intersection between the curves r = a(1 + sinf8) andr = a(1 —
cos 0).

Show that the curves r = a(1 + cos 8) and r = b(1 — cos ) cut each other
orthogonally.

Prove that the following pairs of curves r™ = a™ cosnf and r™ = b™ sinné
intersect orthogonally.

With usual notation, prove that % = riz + r% (Z—;)Z.

Obtain the pedal equation of the curve r™ = a™ cos né

Obtain the pedal equation of the curve r™ = a(1 + cos nf).

Find the radius of curvature of the curve r™ = a™ cos né.

2 2a—
2a7(2a7%) \\here it cuts the x-axis.
3a 3a
22
Expand sin x in ascending powers of (x — g) upto the 4" degree term.

Find the radius of curvature of the curve y2 =

Find the radius of curvature of the curve x3 + y3 = 3axy at (

2 3 4
Using Maclaurins expansion, prove that V1 +sin2x = 1 + x — x? - % + 2—4 + -

Module 2
Ifu = (x? + y? + z%)"1/2 rovethataz—u+62—u+az—u—0
- y P ax2  9y2 = 8zz
— 34434 ,3 _ u , ou  ou_ 3
Ifu =log (x° +y° +z° — 3xyz) prove that P 3y +3,= Tiyiz and hence

show that (aa—x + aa_y + %)Zu = — ﬁ_

If z = xy? + x%y where x = at?,y = 2at, find %. Also verify the result by direct
substitution.

If u= tan‘l(%) wherex = et —e tandy =et +e7t, find %.

du Odu , Ou
Ifu=f(y—2z2z—x,x—1y),then show that 54_54_5_ 0.
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. Evaluate : fooo ad

If z= f(x,y) where x = rcos 8,y = rsin 6, show that (zi) +( )2 ( )2

2
rz(ae)
Ifu—f( ) then prove that x—+yay+z—=0.

_ _ _ . __d(uyw)
fu=x>+y2+zv=xy+yz+zx,w=x+y+zfind] = D"
Ifu—yz v—z w= y,showthata(u'v’w)=4

y 9(x.,2)

_ . _ . . _ 0xy,z) _ o2 .

Ifx =rsin@cos®, y—rsm@sm(z),z—rcose,showthatm—r sin 6.

. a*+b*+c*+ad*
Evaluate : llmx_,o(—)l/x

Evaluate : lim,_,,(2 — E)tan Ga,
Evaluate : lim,._,;/, (sin x)®@" @,
Find the extreme values of the function f(x,y) = x> + y3 — 3x — 12y + 20

Examine the function f(x,y) = xy(a — x — y) for extreme values.

Module 3

. . . 2.
Obtain the Reduction formula for [ sin™ x dx,n > 0 and hence evaluate fon/ sin™ x dx.

. . 2
Obtain the Reduction formula for [ cos™x dx,n > 0 and hence evaluate fon/ cos™ x dx.

Obtain the Reduction formula for [ sin™ x cos™ x dx .

Evaluatefo2 xV2x — x%dx.
Evaluate: fozax\/Zax — x2 dx.

6 . . .
Evaluate :fon/ sin? 6x cos* 6x dx using Reduction formula.

m  sin*@
Evaluate : fO m deo.

Evaluate : f01x3/2(1 — x)3/%dx.

2

2a X
Evaluate : [ T dx
ax—x

2

(1+x2)7/2 dx
Find the orthogonal trajectories of (a) r™ = a™ cosnf (b) r = a(1 + sin9)
(c) r = 2a cos 8 ,where a is a parameter.

Show that the family of parabolas y? = 4a(x + a) is self orthogonal.

2 2
Find the orthogonal trajectories of the family of ellipses z—z +-2— =1, whereAisa

az+A
parameter

2
2+A + b21+/1
If the air is maintained at 30°C and the temperature of the body cools from 80°C to
60°C in 12 minutes, find the temperature of the body after 24 minutes.

A body originally at 80°C cools down to 60°C in 20 minutes in the surroundings of
temperature 40°C, find the temperature of the body after 40 minutes from the
original instant.

Water at temperature 10°C takes 5 minutes to warm upto 20°C in a room of

temperature 40°C, find the temperature after 20 minutes.

Show that the family of curves = 1is self orthogonal, where A is a parameter.
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A body in air at 25°C, cools from 100°C to 75°C in 1 minute. Find the temperature of
the body at the end of 3 minutes.

Solve : (y3 — 3x%y)dx — (x® — 3xy?)dy = 0.

d_y y cosx+siny+y —

Solve : .
dx sinx+xcosy+x

Solve : xy(1 + xyZ)Z—z =1
Solve : ye™ dx + (xe™ + 2y)dy = 0.

2

Ly z, Y
Solve: -~ ——y =<3
Solve : (x? + y? + x)dx + xydy = 0.

Solve : (2xlogx — xy)dy + 2ydx = 0.

Solve : Z—z = xy3 —xy.

Solve (4xy + 3y? — x)dx + x(x + 2y)dy = 0.
a4y _ 3.6

Solve.xdx+y—x ye.

Solve : Z—z + ytanx = y3secx.

Solve:(1+e§)dx+e§(1—§)dy=0

Module 4

Find the directional derivative of the function® = x?yz + 4xz? at (1, -2, -1) along 2i-j-2k.
Find divF and curl F where F = grad(x3 + y3 + z3 — 3xyz).

Find the constants a, b, c such that F = (x+y+az)i+ (bx+2y —2z)j+ (+cy +22)kis
irrotational. Also find @ such that F = V@.

Show that F = (y? —z% + 3yz — 2x)i + (3xz + 2xy)j + (3xy — 2xz + 22)k is both
solenoidal and irrotational.

Show that F = ;3}2
Find the directional derivative of the function® = 4xz3 — 3x2y?2z at (2, -1, 2) along 2i-3j+6k.
Find the angle between the surfaces x? + y? + z2 = 9 and z = x? + y? — 3 at the point (2,
-1, 2).

If F = V(xy3z?2) find divF and curl F_ at the point (1, -1, 1).

IfF = (3x%y — 2)i + (xz3 + y*)j — (2x322)k, find grad(div F ) at (2, -1, 0).

fF = (x+y+1)i+j—(x+yk, show that F. (curl F) =0.

Show that F = (y + 2)i + (z + x)j + (x + y)k is irrotational. Also find a scalar function @
suchthat F = V0.

Show that F = 2yzi 4+ (x222 + z cos yz)j + (2x2yz + y cos yz)k is a potential field and
hence find its scalar potential.

Using Green’s theorem, find the area enclosed between the parabolas x? = 4ay and y? =
4ax.

is both solenoidal and irrotational.

Using Green’s theorem evaluate : f. (x* + xy)dx + (x* + y*)dy, where Cis the square
formed by the linesx = +1,y = +1.
Using Green’s theorem evaluate fc (y —sinx)dx + cosx dy , where Cis the triangle in the

xy — plane formed by the linesy = 0, x =1/2 and y = (2x)/m.
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Verify Green’s theorem for fc (3x%2 — 8y?)dx + (4y — 6xy)dy, where C is the boundary of
the region enclosed by the linesx=0,y=0,x+y=1.

Verify Green’s theorem for [. (xy + y*)dx + x*dy, where Cis the closed curve made up
of the lines y = x and the parabola y = x2.

Using Stokes’s theorem, evaluate fs (curl f).ﬁ‘dS forf =(y—z+2)i+yz+4)j—-
xz)k where S is the cubical surface formed by the planesx=0,y=0,x=2,y=0,z=0.

If Cis the boundary of the triangle with vertices at P(1, 0, 0), Q(0, 2, 0) and R(0, O, 3),
evaluate fc (x + y)dx + (2x — z)dy + (y + z)dz by using Stokes’s theorem.

Verify Stokes’s theorem for f = yi + zj + xk, for the upper part of the shpere x2 + y? +
z? = a?.

Using the Divergence theorem, evaluate | f .7 dS, where f = x3i + y3j + z3k, and Sis
the surface of the sphere x? + y.2+ z2 = a2.

By using the Divergence theorem, evaluate | F.AdS, where f = 4xi+2j+ 2%k, and S
is the surface enclosing the region for which x? + y2 < 4and 0 < z < 3.

Verify the Divergence theorem for f = (x2 — yz)i + (y2 — zx)j + (2% — xy)k over the
rectangular parallelopiped 0 < x <aq,0<y<h,0<z<c.

Module 5
4 0 2 1
. . _12 1 3 4
Find the rank of the matrix A = 5 3 4 7|
12 3 1 4
—2 -1 -3 -1
. . 11 2 3 -1
Find the rank of the matrix A = 1 0 1 1
L 0 1 -1 -1
0 2 3 4
Find the rank of the matrix A = |2 3 5 4
4 8 13 12
0 1 -3 -1
. . 11 0 1 1
Find the rank of the matrix A = 3 1 0 2
11 1 -2 0
2 3 -1 -1
i ; _{1r -1 -2 -4
Find the rank of the matrix A = 3 1 3 _2
6 3 0o -7
1 1 1 6
. . 11 -1 2 5
Find the rank of the matrix A = 3 1 1 8
2 =2 3 7

Test for consistency and solve : x +y+z=6;x—y+2z=53x+y+2z=28

Test for consistency and solve : x + 2y + 3z = 14;4x + 5y + 72 = 35;3x + 3y + 4z = 21
Test for consistency and solve : x + 2y +2z=1;2x+y+z=2;3x+ 2y +2z2=3;y +
z=0

Find the values of A for which the system of equations:x +y+z=1; x + 2y + 4z =

A; x + 4y + 10z = A% has a solution. Solve it in each case.
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For what values of 1 and u does the system of equations: x + 2y + 3z = 6;x + 3y + 5z =
9;2x + 5y + Az = u has (i) no solution, (ii) unique solution and (iii) infinitely many
solutions.

Solve by Gauss elimination method: x +y+z=4; 2x+y—z=1, x—y+ 2z = 2.
Solve by Gauss elimination method :4x +y+z = 4, x + 4y —2z=4; 3x + 2y — 4z =
6.

Solve by Gauss elimination method : 2x —y +3z=1; —=3x+4y—-5z=0; x + 3y —

6z =0.

Solve by Gauss elimination method : x + 2y +z = 3; 2x + 3y +3z=10; 3x —y + 2z =
13.

Solve by Gauss elimination method : 2x + y + 4z = 12; 4x + 11y —z =33; 8x — 3y +
2z = 20.

Solve by Gauss-Jordan method : 2x + y + 4z = 12; 8x — 3y + 2z =20;4x + 11y —z =
33.

Solve by Gauss-Jordan method : 2x — 3y +z= —1; x +4y +5z=253x -4y +z = 2.
Solve by Gauss—Jordan method : 2x +y +z = 10; 3x +2y +3z=18; x + 4y + 9z =
16.

Solve by Gauss—Jordan method : x +y+z= 9; 2x +y—z =0; 2x + 5y + 7z = 52.
Solve by Gauss -Jordanmethod : 2x + 3y —z= 5; 4x +4y —3z=3; 2x — 3y + 2z = 2.
Solve by Gauss-Seidel method : 2x + y + 6z =9;8x + 3y +2z=13;x+ 5y +z=7.
Carry out 5 iterations to obtain solution correct to 4 decimal places.

Solve by Gauss-Seidel method : 20x + y — 2z = 17;3x + 20y —z = —18; 2x — 3y +

20z = 25.

Solve by Gauss-Seidel method : 10x + y +z = 12;x + 10y +z = 12;x + y + 10z = 12.
Solve by Gauss-Seidel method : 5x + 2y +z = 12;x + 4y + 2z = 15;x + 2y + 5z = 20.
Take initial approximation to the solution as [1, 0, 3]7.

Solve by Gauss-Seidel method : 28x + 4y —z = 32;x + 3y + 10z = 24;2x + 17y + 4z =
35. Carry out 5 iterations to obtain solution correct to 4 decimal places.

Using Power method find the largest eigen value and the corresponding eigen vector of the
2 0 1 1

matrix A = |0 2 O] with X(© = [O] Carry out 6 iterations to obtain solution correct to
1 0 2 0

4 decimal places.

Using Power method find the largest eigen value and the corresponding eigen vector of the
2 -1 0 1

matrixA = |—-1 2 —1] with X(© = [1] Carry out 6 iterations to obtain solution
0o -1 2 1

correct to 4 decimal places.

Using Power method find the largest eigen value and the corresponding eigen vector of the
4 1 -1 1

matrixA =2 3 —1] with X(© = ! 0.8 ] Carry out 5 iterations.
-2 1 5 —-0.8

Using Power method find the largest eigen value and the corresponding eigen vector of the
[ 6 -2 2] 1

matrixA = [-2 3 —1| withX©@ = H
2 -1 3 1

Diagonalize the matrix A = :é i] and hence find A*.

. . . [5 4
Diagonalize the matrix A = 1 2] .




33. Reduce the matrix A = [_21 _21] to diagonal form. Hence find A°.
34. Reduce the matrix A = B ﬂ to diagonal form.

35. Reduce the matrix A = [;} %] to diagonal form.



