Module 1

- 1. With usual notation, prove that $\tan \phi = r \frac{d\theta}{dr}$.
- 2. Find the angle between the radius vector and tangent for the curve $r = a(1 + \cos \theta)$ and also find the slope of the tangent at $\theta = \pi/3$.
- 3. Find the angle between the radius vector and tangent for the curve $r^m = a^m (\cos m\theta + \sin m\theta)$.
- 4. Find the angle between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.
- 5. Find the angle of intersection between the curves $r = a(1 + \sin \theta)$ and $r = a(1 \cos \theta)$.
- 6. Show that the curves $r = a(1 + \cos \theta)$ and $r = b(1 \cos \theta)$ cut each other orthogonally.
- 7. Prove that the following pairs of curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ intersect orthogonally.
- 8. With usual notation, prove that $\frac{1}{n^2} = \frac{1}{r^2} + \frac{1}{r^4} (\frac{dr}{d\theta})^2$.
- 9. Obtain the pedal equation of the curve $r^n = a^n \cos n\theta$
- 10. Obtain the pedal equation of the curve $r^n = a(1 + \cos n\theta)$.
- 11. Find the radius of curvature of the curve $r^n = a^n \cos n\theta$.
- 12. Find the radius of curvature of the curve $y^2 = \frac{4a^2(2a-x)}{x}$ where it cuts the x-axis.
- 13. Find the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $(\frac{3a}{2}, \frac{3a}{2})$.
- 14. Expand sin x in ascending powers of $\left(x \frac{\pi}{2}\right)$ upto the 4th degree term.
- 15. Using Maclaurins expansion, prove that $\sqrt{1 + \sin 2x} = 1 + x \frac{x^2}{2} \frac{x^3}{6} + \frac{x^4}{24} + \cdots$

- 1. If $u = (x^2 + y^2 + z^2)^{-1/2}$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.
- 2. If $u = \log (x^3 + y^3 + z^3 3xyz)$ prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x+y+z}$ and hence show that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z})^2 u = -\frac{9}{(x+y+z)^2}$.
- 3. If $z = xy^2 + x^2y$ where $x = at^2$, y = 2at, find $\frac{dz}{dt}$. Also verify the result by direct substitution.
- 4. If $u = \tan^{-1}(\frac{y}{x})$ where $x = e^{t} e^{-t}$ and $y = e^{t} + e^{-t}$, find $\frac{du}{dt}$
- 5. If u = f(y z, z x, x y), then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

6. If z = f(x, y) where $x = r \cos \theta$, $y = r \sin \theta$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = \left($ $\frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$ 7. If $u = f(\frac{x}{y}, \frac{y}{z}, \frac{z}{z})$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$. 8. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z, find $J = \frac{\partial(u, v, w)}{\partial(x, y, z)}$. 9. If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, show that $\frac{\partial(u,v,w)}{\partial(x,v,z)} = 4$. 10. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, show that $\frac{\partial(x, y, z)}{\partial(r \theta \phi)} = r^2 \sin \theta$. 11. Evaluate : $\lim_{x \to 0} (\frac{a^x + b^x + c^x + d^x}{4})^{1/x}$. 12. Evaluate : $\lim_{x\to a} (2-\frac{x}{a})^{\tan(\frac{\pi x}{2a})}$. 13. Evaluate : $\lim_{x \to \pi/2} (\sin x)^{\tan (x)}$. 14. Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$ 15. Examine the function f(x, y) = xy(a - x - y) for extreme values.

- 1. Obtain the Reduction formula for $\int \sin^n x \, dx$, n > 0 and hence evaluate $\int_0^{\pi/2} \sin^n x \, dx$.
- 2. Obtain the Reduction formula for $\int \cos^n x \, dx$, n > 0 and hence evaluate $\int_0^{\pi/2} \cos^n x \, dx$.
- 3. Obtain the Reduction formula for $\int \sin^m x \cos^n x \, dx$.

4. Evaluate
$$\int_0^2 x\sqrt{2x-x^2}dx$$
.

- 5. Evaluate: $\int_{0}^{2a} x \sqrt{2ax x^2} dx$.
- 6. Evaluate : $\int_{0}^{\pi/6} \sin^2 6x \cos^4 6x \, dx$ using Reduction formula.
- 7. Evaluate : $\int_0^{\pi} \frac{\sin^4 \theta}{(1+\cos \theta)^2} d\theta$.
- 8. Evaluate : $\int_0^1 x^{3/2} (1-x)^{3/2} dx$.
- 9. Evaluate : $\int_0^{2a} \frac{x^2}{\sqrt{2ax-x^2}} dx$ 10. Evaluate : $\int_0^{\infty} \frac{x^2}{(1+x^2)^{7/2}} dx$
- 11. Find the orthogonal trajectories of (a) $r^n = a^n \cos n\theta$ (b) $r = a(1 + \sin \theta)$ (c) $r = 2a \cos \theta$, where a is a parameter.
- 12. Show that the family of parabolas $y^2 = 4a(x + a)$ is self orthogonal.
- 13. Find the orthogonal trajectories of the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{a^2+\lambda} = 1$, where λ is a parameter.
- 14. Show that the family of curves $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$ is self orthogonal, where λ is a parameter.
- 15. If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes, find the temperature of the body after 24 minutes.
- 16. A body originally at 80°C cools down to 60°C in 20 minutes in the surroundings of temperature 40°C, find the temperature of the body after 40 minutes from the original instant.
- 17. Water at temperature 10°C takes 5 minutes to warm upto 20°C in a room of temperature 40°C, find the temperature after 20 minutes.

- 18. A body in air at 25°C, cools from 100°C to 75°C in 1 minute. Find the temperature of the body at the end of 3 minutes.
- 19. Solve : $(y^3 3x^2y)dx (x^3 3xy^2)dy = 0$. 20. Solve : $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$. 21. Solve : $xy(1 + xy^2)\frac{dy}{dx} = 1$. 22. Solve : $ye^{xy} dx + (xe^{xy} + 2y)dy = 0$. 23. Solve : $\frac{dy}{dx} - \frac{2}{x}y = \frac{y^2}{x^3}$. 24. Solve : $(x^2 + y^2 + x)dx + xydy = 0$. 25. Solve : $(2x\log x - xy)dy + 2ydx = 0$. 26. Solve : $\frac{dy}{dx} = xy^3 - xy$. 27. Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$. 28. Solve : $x\frac{dy}{dx} + y = x^3y^6$. 29. Solve : $\frac{dy}{dx} + y\tan x = y^3\sec x$. 30. Solve : $(1 + e^{\frac{x}{y}})dx + e^{\frac{x}{y}}(1 - \frac{x}{y})dy = 0$

- 1. Find the directional derivative of the function $\emptyset = x^2yz + 4xz^2$ at (1, -2, -1) along 2i-j-2k.
- 2. Find div \overrightarrow{F} and curl \overrightarrow{F} where $\overrightarrow{F} = grad(x^3 + y^3 + z^3 3xyz)$.
- 3. Find the constants a, b, c such that $\overrightarrow{F} = (x + y + az)i + (bx + 2y z)j + (+cy + 2z)k$ is irrotational. Also find \emptyset such that $\overrightarrow{F} = \nabla \emptyset$.
- 4. Show that $\overrightarrow{F} = (y^2 z^2 + 3yz 2x)i + (3xz + 2xy)j + (3xy 2xz + 2z)k$ is both solenoidal and irrotational.
- 5. Show that $\overrightarrow{F} = \frac{xi+yj}{x^2+y^2}$ is both solenoidal and irrotational.
- 6. Find the directional derivative of the function $\emptyset = 4xz^3 3x^2y^2z$ at (2, -1, 2) along 2i-3j+6k.
- 7. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 8. If $\overrightarrow{F} = \nabla(xy^3z^2)$ find div \overrightarrow{F} and curl \overrightarrow{F} at the point (1, -1, 1).
- 9. If $\vec{F} = (3x^2y z)i + (xz^3 + y^4)j (2x^3z^2)k$, find grad(div \vec{F}) at (2, -1, 0).
- 10. If $\overrightarrow{F} = (x + y + 1)i + j (x + y)k$, show that $\overrightarrow{F} \cdot (curl \overrightarrow{F}) = 0$.
- 11. Show that $\overrightarrow{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational. Also find a scalar function \emptyset such that $\overrightarrow{F} = \nabla \emptyset$.
- 12. Show that $\vec{F} = 2yzi + (x^2z^2 + z\cos yz)j + (2x^2yz + y\cos yz)k$ is a potential field and hence find its scalar potential.
- 13. Using Green's theorem, find the area enclosed between the parabolas $x^2 = 4ay$ and $y^2 = 4ax$.
- 14. Using Green's theorem evaluate : $\int_C (x^2 + xy)dx + (x^2 + y^2)dy$, where C is the square formed by the lines $x = \pm 1, y = \pm 1$.
- 15. Using Green's theorem evaluate $\int_C (y \sin x) dx + \cos x dy$, where C is the triangle in the xy plane formed by the lines y = 0, x = $\pi/2$ and y = $(2x)/\pi$.

- 16. Verify Green's theorem for $\int_{C} (3x^2 8y^2) dx + (4y 6xy) dy$, where C is the boundary of the region enclosed by the lines x = 0, y = 0, x + y = 1.
- 17. Verify Green's theorem for $\int_{C} (xy + y^2) dx + x^2 dy$, where C is the closed curve made up of the lines y = x and the parabola $y = x^2$.
- 18. Using Stokes's theorem, evaluate $\int_{S} (curl \vec{f}) \cdot \hat{n} dS$ for $\vec{f} = (y z + 2)i + (yz + 4)j (yz + 4)i + (yz + 4$ xz)k where S is the cubical surface formed by the planes x = 0, y = 0, x = 2, y = 0, z = 0.
- 19. If C is the boundary of the triangle with vertices at P(1, 0, 0), Q(0, 2, 0) and R(0, 0, 3),
- evaluate $\int_C (x + y)dx + (2x z)dy + (y + z)dz$ by using Stokes's theorem. 20. Verify Stokes's theorem for $\vec{f} = yi + zj + xk$, for the upper part of the shpere $x^2 + y^2 + y^2$ $z^2 = a^2$.
- 21. Using the Divergence theorem, evaluate $\int_{S} \vec{f} \cdot \hat{n} \, dS$, where $\vec{f} = x^{3}i + y^{3}j + z^{3}k$, and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 22. By using the Divergence theorem, evaluate $\int_{S} \vec{f} \cdot \hat{n} \, dS$, where $\vec{f} = 4xi \pm 2j + z^2k$, and S is the surface enclosing the region for which $x^2 + y^2 \le 4$ and $0 \le z \le 3$.
- 23. Verify the Divergence theorem for $\vec{f} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ over the rectangular parallelopiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.

- 1. Find the rank of the matrix $A = \begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$

 2. Find the rank of the matrix $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$

 3. Find the rank of the matrix $A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}$

 4. Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$

 5. Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$

 6. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$

 6. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \end{bmatrix}$
 - 7. Test for consistency and solve : x + y + z = 6; x y + 2z = 5; 3x + y + z = 8
 - 8. Test for consistency and solve : x + 2y + 3z = 14; 4x + 5y + 7z = 35; 3x + 3y + 4z = 21
 - 9. Test for consistency and solve : x + 2y + 2z = 1; 2x + y + z = 2; 3x + 2y + 2z = 3; y + 3z = 0
 - 10. Find the values of λ for which the system of equations : x + y + z = 1; x + 2y + 4z = 1 λ ; $x + 4y + 10z = \lambda^2$ has a solution. Solve it in each case.

- 11. For what values of λ and μ does the system of equations : x + 2y + 3z = 6; x + 3y + 5z = 9; $2x + 5y + \lambda z = \mu$ has (i) no solution, (ii) unique solution and (iii) infinitely many solutions.
- 12. Solve by Gauss elimination method : x + y + z = 4; 2x + y z = 1; x y + 2z = 2.
- 13. Solve by Gauss elimination method : 4x + y + z = 4; x + 4y 2z = 4; 3x + 2y 4z = 6.
- 14. Solve by Gauss elimination method : 2x y + 3z = 1; -3x + 4y 5z = 0; x + 3y 6z = 0.
- 15. Solve by Gauss elimination method : x + 2y + z = 3; 2x + 3y + 3z = 10; 3x y + 2z = 13.
- 16. Solve by Gauss elimination method : 2x + y + 4z = 12; 4x + 11y z = 33; 8x 3y + 2z = 20.
- 17. Solve by Gauss-Jordan method : 2x + y + 4z = 12; 8x 3y + 2z = 20; 4x + 11y z = 33.
- 18. Solve by Gauss-Jordan method : 2x 3y + z = -1; x + 4y + 5z = 25; 3x 4y + z = 2.
- 19. Solve by Gauss–Jordan method : 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16.
- 20. Solve by Gauss–Jordan method : x + y + z = 9; 2x + y z = 0; 2x + 5y + 7z = 52.
- 21. Solve by Gauss -Jordanmethod : 2x + 3y z = 5; 4x + 4y 3z = 3; 2x 3y + 2z = 2.
- 22. Solve by Gauss-Seidel method : 2x + y + 6z = 9; 8x + 3y + 2z = 13; x + 5y + z = 7. Carry out 5 iterations to obtain solution correct to 4 decimal places.
- 23. Solve by Gauss-Seidel method : 20x + y 2z = 17; 3x + 20y z = -18; 2x 3y + 20z = 25.
- 24. Solve by Gauss-Seidel method : 10x + y + z = 12; x + 10y + z = 12; x + y + 10z = 12.
- 25. Solve by Gauss-Seidel method : 5x + 2y + z = 12; x + 4y + 2z = 15; x + 2y + 5z = 20. Take initial approximation to the solution as $[1, 0, 3]^T$.
- 26. Solve by Gauss-Seidel method : 28x + 4y z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35. Carry out 5 iterations to obtain solution correct to 4 decimal places.
- 27. Using Power method find the largest eigen value and the corresponding eigen vector of the

matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ with $X^{(0)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Carry out 6 iterations to obtain solution correct to 4 decimal places.

28. Using Power method find the largest eigen value and the corresponding eigen vector of the $\begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$

matrix
$$A = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 with $X^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Carry out 6 iterations to obtain solution correct to 4 decimal places.

29. Using Power method find the largest eigen value and the corresponding eigen vector of the

matrix
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
 with $X^{(0)} = \begin{bmatrix} 1 \\ 0.8 \\ -0.8 \end{bmatrix}$. Carry out 5 iterations.

30. Using Power method find the largest eigen value and the corresponding eigen vector of the $\begin{bmatrix} 6 & -2 & 2 \end{bmatrix}$

matrix
$$A = \begin{bmatrix} 0 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 with $X^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

31. Diagonalize the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ and hence find A^4 . 32. Diagonalize the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$. 33. Reduce the matrix $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ to diagonal form. Hence find A^6 . 34. Reduce the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ to diagonal form. 35. Reduce the matrix $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$ to diagonal form.