

UIN: \square Sub. Code : 19KBMAT21
Khaja Bandanawaz University
Faculty of Engineering and Technology
Second Semester B. E. Degree Examination
Sub: Advanced Calculus and Laplace Transform

Section - A

I. Answer any TEN Questions from the following :
(02 Marks Each)

1. Solve $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$
2. Obtain the complementary function of $y^{\prime \prime}+9 y=0$.
3. Solve $\left(D^{2}+6 D+9\right) y=0$
4. Obtain the complementary function of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=(1+x)$
5. Write the general solutuion of $(2 x-1)^{2} y^{\prime \prime}+(2 x-1) y^{\prime}-2 y=0$.
6. Obtain the general solution of $y=p x+p^{2}$.
7. Form the partial differential equation by eliminating the arbitrary constants from the equation $z=a x+b y+a b$.
8. Form the partial differential equation by eliminating the arbitrary functions from the equation $z=f(x y)$.
9. Obtain the general solution of the equation $p=\sin (y-x p)$.
10. Evaluate the value of $\Gamma\left(-\frac{5}{2}\right)$.
11. Compute the value of $B\left(3, \frac{5}{2}\right)$.
12. Evaluate $\int_{1}^{2} \int_{0}^{x} d y d x$.
13. Find the Laplace transform of $1+2 t^{3}-4 e^{3 t}$.
14. Find the inverse Laplace Transform of $\frac{2 s}{s^{2}+9}$.
15. Obtain the Laplace Transform of $\frac{1}{s+1}-\frac{2}{s-1}+\frac{3}{s^{4}}$.

Section - B

II. Answer any FIVE full questions from the following :
(08 Marks Each)

1. (a) Solve $\left(4 D^{4}-8 D^{3}-7 D^{2}+11 D+6\right) y=0$
(b) Find general solution of $\left(D^{2}+7 D+17\right) y=\cosh x$, given that the complementary function is $y=A e^{-3 x}+B e^{-4 x}$.
2. (a) Using the method of undetermined coefficients solve $y^{\prime \prime}-3 y^{\prime}+2 y=x^{2}+e^{x}$ given that the Complementary function is $y=A e^{x}+B e^{2 x}$
(b) Obtain the Particular Integral of $\left(D^{3}+6 D^{2}+11 D+6\right) y=e^{x}+1$, given that the complementary function is $y=A e^{-x}+B e^{-2 x}+C e^{-3 x}$.
3. Solve $x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+x y^{\prime}+8 y=65 \cos \log x$.
4. (a) Solve $\frac{d y}{d x}-\frac{d x}{d y}=\frac{x}{y}-\frac{y}{x}$ by solving for p .
(b) Solve $y=2 p x+y^{2} p^{3}$ by solving for x .
5. (a) Form the partial differential equation by eliminating the arbitrary constants from $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(b) Solve $\frac{\partial^{3} z}{\partial x^{2} \partial y}=\sin (3+2 y)$.
6. Obtain the various possible solutions of one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by the mehod of separation of variables.
7. (a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x y z d z d y d x$.
(b) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x y d y d x$ by changing the order of integration.
8. By employing the convolution theorem, evaluate the inverse Laplace Transform of $\frac{s}{\left(s^{2}+a^{2}\right)^{2}}$.

Section - C

III. Answer any FOUR full questions from the following :

1. (a) Using the method of variation of parameters solve $y^{\prime \prime}-6 y^{\prime}+9 y=\frac{e^{3 x}}{x^{2}}$
(b) Find the general solution of $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x$.
2. (a) Solve $(p x-y)(p y+x)=2 p$, by reducing into Clairauit's form taking the substitution $X=x, Y=y$.
(b) Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin \log (1+x)$.
3. (a) Derive one-dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
(b) Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$.
4. (a) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
(b) Prove that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta \times \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}}=\pi$.
5. (a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2)}\right.} d x d y$ by changing to polar coordinates.
(b) Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by double integration.
6. (a) If $f(t)=\left\{\begin{array}{c}t, 0 \leq t \leq a \\ 2 a-t, a \leq t \leq 2 a\end{array}, f(t+2 a)=f(t)\right.$, then show that $\mathrm{L}\{f(t)\}=$ $\frac{1}{s^{2}} \tanh \frac{a s}{2}$.
(b) Express $f(t)=\left\{\begin{array}{c}\sin t, 0<t \leq \pi / 2 \\ \cos t, t>\pi / 2\end{array}\right.$ in terms of the unit step function and hence find its Laplace transform.

7 (a) Solve by using Laplace transform method:

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=e^{-t}, \quad y(0)=0, y^{\prime}(0)=0
$$

(b) Obtain the inverse Laplace Transform of $\frac{s+5}{s^{2}-6 s+13}$.

