

UIN:

Sub. Code : 19KBMAT11

Khaja Bandanawaz University
Faculty of Engineering and Technology
Second Semester B. E. Degree Examination
Sub : Differential Calculus and Linear Algebra

Time : 3 Hrs
Max. Marks : 100

Section A

I. Answer any TEN Questions from the following :
(02 Marks Each)

1. If $\vec{f}=(x+y+1) i+j-(x+y) k$, show that \vec{f}. curl $\vec{f}=0$.
2. Show that $\vec{f}=(z+\sin y) i+(x \cos y-z) j+(x-y) k$ is irrotational.
3. If $x=u(1-v), y=u v$, find $\frac{\partial(x, y)}{\partial(u, v)}$.
4. Find $\operatorname{div} \vec{F}$ where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
5. Evaluate $\lim _{x \rightarrow 1} x^{1 /(1-x)}$.
6. Evaluate $\int_{0}^{2 \pi} \cos ^{4} x d x$.
7. Evaluate $\int_{0}^{\pi / 2} \sin ^{6} x \cos ^{5} x d x$.
8. Check whether the differential equation $3 x(x y-2) d x+\left(x^{3}+2 y\right) d y=0$ is exact differential equation.
9. Define rank of a matrix. Also write the elementary row transformations.
10. Show that for the polar curve $r=a e^{\theta \cot \alpha}$, where α is a constant, the radius vector is inclined at a constant angle to the tangent, at every point.
11. Find the eigen values of the matrix $\left(\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right)$.
12. Solve the system of equations: $x+2 y+3 z=0,3 x+4 y+4 z=0,7 x+10 y+12 z=0$.
13. If $u=x^{y}$, obtain $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
14. Write down the expressions for radius of curvature in cartesian form and polar form.
15. State Taylor's theorem for a function of one variable.

Section B

II. Answer any FIVE full questions from the following :

1. (a) With usual notation, prove that $\tan \emptyset=r \frac{d \theta}{d r}$.
(b) Prove that $\tan ^{-1} x=\tan ^{-1} \frac{\pi}{4}+\frac{\left(x-\frac{\pi}{4}\right)}{1+\frac{\pi^{2}}{16}}-\frac{\pi\left(x-\frac{\pi}{4}\right)^{2}}{4\left(1+\frac{\pi^{2}}{16}\right)^{2}}+\cdots$
2. (a) Obtain the pedal equation of the curve $r^{m} \cos m \theta=a^{m}$.
(b) Find the angle between the curves $r=\frac{a \theta}{1+\theta}$ and $r=\frac{a}{1+\theta^{2}}$.
3. (a) If $u=\tan ^{-1} \frac{y}{x}$ where $x=e^{t}-e^{-t}, y=e^{t}+e^{-t}$, find $\frac{d u}{d t}$.
(b)Find the maximum value of the function $f(x, y)=x^{3} y^{2}(1-x-y), x, y \neq 0$.
4. (a) If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, w=2 z^{2}-x y$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at the point ($1,-1,0$).
(b) Evaluate $\lim _{x \rightarrow \pi / 2}(\cos x)^{\frac{\pi}{2}-x}$
5. (a) Find the directional derivative of $\varnothing=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ along the vector $\vec{a}=2 i-j-2 k$.
(b) If C is the boundary of the triangle with vertices at $\mathrm{P}(1,0,0), \mathrm{Q}(0,2,0)$ and $\mathrm{R}(0,0,3)$, evaluate $\int_{C}(x+y) d x+(2 x-z) d y+(y+z) d z$ by using Stokes's theorem.
6. (a) A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 minutes in the surroundings of temperature $40^{\circ} \mathrm{C}$, find the temperature of the body after 40 minutes from the original instant.
(b) Evaluate: $\int_{0}^{2 a} x \sqrt{2 a x-x^{2}} d x$.
7. (a) Obtain the Reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x$.
(b) Solve : $\frac{d y}{d x}-\frac{2}{x} y=\frac{y^{2}}{x^{3}}$.
8. (a) Reduce the matrix $\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$ to diagonal form.
(b) Find the rank of the matrix $A=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$

Section C

III. Answer any FOUR full questions from the following :
(10 Marks Each)

1. (a) Find the orthogonal trajectories of the family of ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1$, where λ is a parameter.
(b) Solve: $\left(y^{3}-3 x^{2} y\right) d x-\left(x^{3}-3 x y^{2}\right) d y=0$.
2. (a) Show that $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+2 z) k$ is both solenoidal and irrotational.
(b) Using Green's theorem, find the area enclosed between the parabolas $x^{2}=$ 4ay and $y^{2}=4 a x$.
3. (a) Find the radius of curvature of $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ at any point (x, y).
(b) Prove that $\log \sqrt{\frac{1+x}{1-x}}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots$
4. (a) If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
(b) If $z(x+y)=x^{2}+y^{2}$, show that $\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^{2}=4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)$.
5. (a) Verify the Divergence theorem for $\vec{f}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
(b) If C is the boundary of the triangle with vertices at $\mathrm{P}(1,0,0), \mathrm{Q}(0,2,0)$ and $\mathrm{R}(0,0,3)$,
evaluate $\int_{C}(x+y) d x+(2 x-z) d y+(y+z) d z$ by using Stokes's theorem.
6. (a) Using Power method find the largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ with $X^{(0)}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Carry out 5 iterations.
(b) Solve Gauss-Seidel method: $2 x+y+6 z=9$; $8 x+3 y+2 z=13 ; x+5 y+z=7$. Carry out 5 iterations to obtain solution correct to 4 decimal places.
7. (a) Find the values of a and b for which the equations:

$$
x+y+z=3, x+2 y+2 z=6, x+a y+3 z=b
$$

has (i) no solution, (ii) a unique solution, (iii) infinitely many solutions.
(b) Solve by Gauss-Jordan method:

$$
2 x+y+z=10 ; 3 x+2 y+3 z=18 ; x+4 y+9 z=16
$$

