Khaja Bandanawaz University ,Kalaburagi B.E .Module Question paper Engineering Physics (Common to all branches) (Effective from the academic year 2019-20) Semester I/II

Module 1

1) Define Laser.

- 2) Explain the term Induced Absorption.
- 3) Define Spontaneous Emission.
- 4) Define Stimulated Emission.
- 5) What is Population Inversion?
- 6) Define Fractional Index change.
- 7) Explain the terms
 - (a) Resonant Cavity
 - (b) Metastable State.
- 8) Define Optical Fiber.
- 9) What is total internal reflection?
- 10) Define Numerical Aperture.
- 11) Define angle of acceptance.

4 Marks

- 1) Explain the requisites of a laser system.
- 2) Explain the terms
 - a) Resonant Cavity
 - b) Pumping
 - c) Lasing
 - d) Active System
- 3) What are Laser's? Mention any two applications of Lasers.
- 4) Derive an Expression for Numerical Aperture of an optical Fibers.
- 5) Explain Point Point communication system with a block diagram.

2 Marks

6 Marks / 8 Marks

- 1) Derive an expression for Einstein's co-efficient.
- 2) Explain the construction and working of semiconductor diode laser with neat diagram.
- 3) Explain the construction and working He-Ne laser with neat diagram.
- 4) Explain different types of optical fibers with its refractive index profile.
- 5) Define attenuation. Explain the factors responsible for fiber loss.

10 <u>Marks</u>

2 Marks

4 Marks

- 1) Define Laser Explain the construction and working He-Ne laser with neat diagram.
- 2) What is Population Inversion? Explain different types of optical fibers with its refractive index profile.

Module 2

1) What is Hall Effect?

2) Define Fermi energy.

3) What is Hall voltage?

4) What are Nanomaterials?

5) What is Carbon Nanotube?

1) What is Electron Concentration?

- 2) Mention the Expression for Electron Concentration.
- 3) What is Hole Concentration?
- 4) Mention the Expression for Hole Concentration.
- 5) Define Lasing and Active system.
- 6) Define Hook's Law.

6Marks / 8 Maraks

- 1) Derive an expression for Fermi-level in an intrinsic semiconductor.
- 2) Explain top down approach with neat figure.
- 3) Explain bottom up approach with neat figure.
- 4) Explain the properties of CNTs.
- 5) Mention the application of CNTs

10 Marks

2 Marks

- 1) What is Electron Concentration? Derive an expression for Fermi-level in an intrinsic semiconductor.
- 2) What are Nanomaterials? Explain top down & Bottom up approach with neat figure.
- 3) What is Hall effect? Derive an expression for Hall voltage and Hall coefficient.
- 4) Explain Sol-gel method and Ball-milling method for synthesis of Nanomaterials.
- 5) Explain the construction and working of SEM.
- 6) Explain the construction and working of Atomic force microscopy.
- 7) Explain the Arc discharge method for synthesis of CNTs.

Module 3

1)	Define Elasticity.	
2)	Define Plasticity.	
3)	Define Young's Modulus.	
4)	Define Bulk Modulus.	
5)	Define Rigidity Modulus.	
6)	Define Poisson's Ratio	
		4 Marks
1)	Explain Strain hardening.	<u>+ 1/1/11/185</u>
2)	Explain Strain Softening.	
3)	Derive the relation between Y,n,K.	
4)	All Numericals.	

3

6Marks / 8 Marks

- 1) Define Hook's law. Explain the stress strain diagram.
- 2) Obtain an expression for Bulk modulus interms of α and β .
- 3) Obtain an expression for Rigidity modulus interms of α and β

10 Marks

2 Marks

- 1) Explain Strain Softening & Define Hook's law. Explain the stress strain diagram
- 2) Derive an Exprssion for bending of beams .
- 3) Derive an expression for Single cantilever

Module - 4

 Define System Define Thermodynamics 	
3). Define Sensors	<u>4 Marks</u>
 Write a note on types of system Write a note Principles of sensing Explain Types of thermodynamics process 	
 Write a note on Microscopic and macroscopic approaches Explain Mechanical sensor Write a note on properties of thermodynamics 	<u>6 Marks</u>
 Derive Gibbs and Helmholtz functions Explain Acoustic and Magnetic Sensor Difference between ideal gas and real gases 	<u>8 Marks</u>
 With neat diagram Radiation and Thermal sensors Define System, types of system, Types of thermodynamics process, 	<u>10 Marks</u>

Module – 5

1) Define Space lattice.

2) Define Polymarphism.

3) Define Allotropy.

- 1) Define lattice points, unit cell, Bravais lattice and primitive cell
- 2) The grating space of calcite is $3.036A^0$ and for the first order Bragg reflection the glancing angle is 12^0 . Find the path difference between the rays
- 3) Discuss the allotropy of carbon with reference to diamond and graphite

<u>6 Marks</u>

- 1) Give a qualitative explanation of perovskite crystal structure
- 2) Define coordination number and packing factor. Calculate the packing factor for BCC &FCC Structure

8 Marks

- 1) Describe briefly the seven crystal systems
- 2) Obtain an expression for the inter planar distance in a cubic crystal in terms of Miller indices
- Define coordination number and packing factor. Calculate the packing factor for BCC &FCC structure

Describe Fermi level in intrinsic semiconductor and hence obtain the expression for Fermi energy in terms of energy gap of intrinsic semiconductor

2) Give a brief account for Fermi-Dirac distribution theory. Obtain the expression for Fermi energy at 0 K

2 Marks

4 Marks