

Model Question Paper-02

Khaja Bandanawaz University

Second Semester BE Degree Examination

Sub: Basic Electronics

Time:3 Hrs Max Marks:100

Section-A

I. Answer any TEN questions from the following.

(02 Marks each)

- Q1. Write Two's compliment of (11011100)₂
- Q2. What is binary number system.
- Q3. What are universal gates.
- Q4. What is PN junction diode?
- Q5. What is Forward biasing and Reverse biasing of Diode?
- Q6. What is Capacitor filter?
- Q7. Define inverting and non inverting Op-AMP.
- Q8. Define CMRR.
- Q9. What is Summing amplifier?
- Q10. Define Modulation.
- Q11. What is modulation index?
- Q12. What are the elements of Fiber optics?
- Q13. What is Transducer?
- Q14. Define Active and Passive Transducers.
- Q15. What is Oscillator?

Section-B

II. Answer FIVE full questions from the following.

(08 Marks each)

- Q1. a. convert i) (25.375)₁₀ and ii) (20E.CA)₁₆ into binary Equivalent.
 - b. Using NAND gates implement i) OR gate and ii) NOR gate
- Q2. a. Explain with truth table and logic diagram Demorgan's theorem
 - b. Simplify the following i) Y=(B+CA)(C+AB) and ii) Y=AB+AC+BD+CD.
- Q3. a. Explain with neat sketch V-I characteristics of PN junction diode.
 - b. Define α_{dc} and β_{dc} and Establish a relationship between α_{dc} and β_{dc} .
- Q4. a. Derive an expressions for average dc current and average dc voltage of Full wave rectifier
 - b. A transistor has α =0.9. If I_E =10mA, find the values of β , I_B and I_C .
- Q5. a. Explain the importance of inverting and non-inverting amplifier
 - b. Define the terms i) Differential Gain A_d and ii) Slew Rate
- Q6. a. List the various ideal op-amp characteristics
- b. The input to the basic differentiator circuit is a sinusoidal voltage of peak value of 10mV frequency 1.5KHZ. Find the output if, $Rf=100K\Omega$ and $C1=1\mu F$
- Q7. a. What is modulation. Explain need of modulation.
 - b. List the advantages and applications of optical Fiber communication.
- Q8. a. Explain principles of Trasduction.
 - b. What is Barkhaunsens criteria for sustained oscillations.

Section-C

III. Answer FOUR full questions from the following.

(10 Marks each)

- Q1. a. Design Full Adder and Implement it using two half adders.
 - b. Simplify Y = AB + AC + ABC (AB+ C). Implement the same using gates
- Q2. a. With a neat circuit diagram and waveform, explain the working of half-wave rectifier.

- b. In a FWR with a capacitor filter, the load current from the circuit operating from 230V,50Hz supply is 10mA. Establish the value of capacitor required to keep the ripple factor less then 1%.
- Q3. a. Draw common emitter circuit and sketch the input and output characteristics. Also explain operating regions by indicating them on characteristics curve.
- b. In a Common Emitter transistor circuit if β = 100 and I_B = 50 $\mu A,\,$ compute the values of $\alpha,\,I_E$ and I_C
- Q4. a. Draw internal block diagram of op-amp and mention the role of each stage
 - b. Explain how Op-Amp can be used as i) Integrator ii) Voltage Follower
- Q5. a. Design an adder circuit using an op-amp to obtain an output voltage of Vo=-[2V1+3V2+5V3]
 - b. Draw the three input inverting summer circuit and derive an expression for its output voltage.
 - Q6. a. Draw and explain the block diagram of basic communication system.
- b. With a neat block diagram explain the working of Optical Fiber Communication systems
 - Q7. a. With the help of circuit diagram explain the working of Wein Bridge oscillator.
- b. Explain the Barkhausen criteria for oscillators with special reference to the condition $A\beta<1$, $A\beta>1$, $A\beta=1$.