

UIN:

Sub. Code : 19KBMAT11

Khaja Bandanawaz University
Faculty of Engineering and Technology
First Semester B. E. Degree Examination
Sub : Differential Calculus and Linear Algebra
Model question paper -2
Max. Marks : 100

Time : 3 Hrs

Section A

I. Answer any TEN Questions from the following :
(02 Marks Each)

1. Write the expression for the angle between the radius vector and tangent for a polar curve $r=f(\theta)$. Also define pedal equation.
2. Find the angle between the curves $r=2 \sin \theta, r=2 \cos \theta$.
3. Obtain the radius of curvature of the curve $y=4 \sin x-\sin 2 x$ at $x=\pi / 2$.
4. If $u=e^{x y z}$, evaluate $\frac{\partial^{2} u}{\partial y \partial z}$.
5. If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
6. Evaluate $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$.
7. Evaluate : $\int_{0}^{\pi / 6} \sin ^{2} 6 x \cos ^{4} 6 x d x$ using Reduction formula.
8. Show that $\left(\left(3 x^{2} y^{2}+x^{2}\right) d x+\left(2 x^{3} y+y^{2}\right) d y=0\right.$ is exact differential equation.
9. Evaluate $\int_{0}^{\pi / 8} \cos ^{5} 4 x d x$.
10. When is a vector \vec{F} said to be solenoidal and when is it irrotational ?
11. Define directional derivative. Where is it maximum and what is its maximum value ?
12. If If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$ find $\operatorname{div} \vec{F}$ at the point $(1,-1,1)$.
13. Write the diagonal form of $A=\left(\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right)$.
14. Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$.
15. Write down the condition for consistency for a non-homogeneous system of linear equations. Also write the nature of solution depending on the value of rank of the matrix.

Section B

II. Answer any FIVE full questions from the following :
(08 Marks Each)

1. (a)Derive the expression for the length of the perpendicular from the pole on to the tangent for the polar curve $r=f(\theta)$.
(b) Find the angle between the radius vector and tangent for the curve $r=a(1+\cos \theta)$ and also find the slope of the tangent at $\theta=\pi / 3$.
2. (a) Find the angle between the curves $r^{2} \sin 2 \theta=4$ and $r^{2}=16 \sin 2 \theta$.
(b) Obtain the pedal equation of the curve $r^{n}=a(1+\cos n \theta)$.
3. (a) If $x=r \sin \theta \cos \emptyset, y=r \sin \theta \sin \emptyset, z=r \cos \theta$, show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \varnothing)}=r^{2} \sin \theta$.
(b) If $u=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, then prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$.
4. (a) Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.
(b) Evaluate : $\lim _{x \rightarrow \pi / 2}(\sin x)^{\tan (x)}$.
5. Show that $\vec{F}=\left(2 x y^{2}+y z\right) i+\left(2 x^{2} y+x z+2 y z^{2}\right) j+\left(2 y^{2} z+x y\right) k$ is a conservative force field. Find its scalar potential.
6. (a) Evaluate : $\int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{7 / 2}} d x$
(b) Show that the family of parabolas $y^{2}=4 a(x+a)$ is self orthogonal.
7. (a) Obtain the reduction formula for $\int \cos ^{n} x d x$.
(b) Solve : $\frac{d y}{d x}+y \tan x=y^{3} \sec x$.
8. (a) Find the values of λ for which the system of equations: $x+y+z=1 ; x+2 y+4 z=$ λ; $x+4 y+10 z=\lambda^{2}$ has a solution. Solve it in each case.
(b) Find the rank of the matrix $A=\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1\end{array}\right]$.

Section C

III. Answer any FOUR full questions from the following :

1. (a) Obtain the Taylor's series expansion of $f(x)=\log (\cos x)$ about the point $x=\pi / 3$ upto the fourth degree term.
(b) Find the radius of curvature of the curve $y^{2}=\frac{4 a^{2}(2 a-x)}{x}$ where it cuts the x-axis.
2. (a) If $z=x y^{2}+x^{2} y$ where $x=a t^{2}, y=2 a t$, find $\frac{d z}{d t}$. Also verify the result by direct substitution.
(b) If $z=f(u, v)$, where $u=x^{2}-y^{2}$ and $v=2 x y$, prove that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=4\left(x^{2}+y^{2}\right)\left[\left(\frac{\partial z}{\partial u}\right)^{2}+\left(\frac{\partial z}{\partial v}\right)^{2}\right] .
$$

3. (a) Find the directional derivative of $\emptyset=4 x z^{3}-3 x^{2} y^{2} z$ at $(2,-1,2)$ along $2 i-3 j+6 k$.
(b) If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$ find $\operatorname{div} \vec{F}$ and curl \vec{F} at the point $(1,-1,1)$.
4. (a)Using Green's theorem evaluate $\int_{C}(y-\sin x) d x+\cos x d y$, where C is the triangle in
the xy plane formed by the lines $y=0, x=\frac{\pi}{2}, y=\frac{2 x}{\pi}$.
(b) Verify Stoke's theorem for $\vec{f}=y i+z j+x k$, for the upper part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
5. (a) Solve : $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$.
(b) If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 12 minutes, find the temperature of the body after 24 minutes.
6. (a) Using Power method find the largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5\end{array}\right]$ with $X^{(0)}=\left[\begin{array}{c}1 \\ 0.8 \\ -0.8\end{array}\right]$. Carry out 5 iterations.
(b) Solve by Gauss-Seidel method: $28 x+4 y-z=32 ; x+3 y+10 z=24 ; 2 x+17 y+$ $4 z=35$. Carry out 5 iterations to obtain solution correct to 4 decimal places.
7. (a) Solve by Gauss-Jordan method: $x+y+z=9 ; 2 x+y-z=0 ; 2 x+5 y+7 z=52$.
(b) Diagonalize the matrix $A=\left[\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right]$ and hence find A^{4}.
